ANÁLISE REAL: PROVA 1

SINUÊ DAYAN BARBERO LODOVICI

IMPORTANTE:

- Todos os exercícios valem (2,5).
- Escolham 4 das 6 questões abaixo, indicando sua escolha no início da prova (abaixo do nome).
- Na ausência da apresentação da escolha serão corrigidos APENAS os exercícios de número 1 a 4. Nesse caso, os exercícios 5 e 6, mesmo que corretamente resolvidos, serão completamente ignorados durante a correção desta
- Boa Prova!

Exercícios

- Exercício 1. (a) Prove o Teorema dos Invervalos Encaixados: Dada uma sequência decrescente $I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$ de intervalos fechados limitados $I_n =$ $[a_n,b_n]$ de \mathbb{R} , existe pelo menos um número real c tal que $c\in I_n$ para todo
- (b) Dê um exemplo de uma sequência decrescente $X_1\supset X_2\supset\cdots\supset X_n\supset\cdots$ de conjuntos infinitos cuja intersecção $\cap_{n=1}^{\infty} X_n$ seja vazia.
- Exercício 2. Prove que o conjunto dos números reais é não enumerável.
- **Exercício 3.** Dadas as sequências (x_n) e (y_n) , defina (z_n) pondo $z_{2n} = x_n$ e $z_{2n-1}=y_n$ para todo $n\in\mathbb{N}$. Se $\lim x_n=\lim y_n=a$, prove que $\lim z_n=a$.
- **Exercício 4.** Diz-se que (x_n) é uma sequência de Cauchy quando, para todo $\epsilon > 0$ dado, existe $n_0 \in \mathbb{N}$ tal que $m, n > n_0 \Rightarrow |x_m - x_n| < \epsilon$.

Mostre que se (x_n) é uma sequência convergente então (x_n) é também uma sequência de Cauchy.

- **Exercício 5.** (a) A série $\sum (-1)^n \frac{1}{n}$ é convergente. Por quê? Enuncie os teoremas usados na argumentação.
- (b) Encontre uma sequência (x_n) limitada tal que ∑x_n[(-1)ⁿ 1/n] seja divergente.
 (c) Mostre que a série 1 1/2 + 2/3 1/3 + 2/4 1/4 + 2/5 1/5 + 2/6 1/6 + ··· é divergente. Isso não contradiz o teorema de Leibniz? Por quê?
- **Exercício 6.** (a) Mostre que a série $\sum \frac{1}{n(n+1)}$ é convergente. Encontre sua soma.
- (b) Use o critério de comparação para provar que $\sum 1/n^2$ é convergente, a partir da convergência de $\sum \frac{2}{n(n+1)}$.